Dr. Blasy - Dr. Busse

Niederlassung der AGROLAB Labor GmbH, Bruckberg Moostraße 6 a, 82279 Eching am Ammersee, Germany Tel.: +49 (08143) 7901, Fax: +49 (08143) 7214 eMail: eching@agrolab.de www.agrolab.de

Your labs. Your service.

Dr.Blasy-Dr.Busse Moosstr. 6A, 82279 Eching

Gemeindewerke Waging am See WASSERVERSORGUNG Am Höllenbach 18 83329 Waging a. See

> Datum 30.06.2022 Kundennr. 4100014118

PRÜFBERICHT

Verfahren sind mit dem Symbol " *) " gekennzeichnet Auftrag 1762525

Analysennr. 282135 Trinkwasser

Projekt 13330 Trinkwasseruntersuchungen

Probeneingang 28.06.2022

Probenahme 27.06.2022 09:05

Probenehmer AGROLAB Jürgen Christiansen (613)

Kunden-Probenbezeichnung 966850

LFW, Vollzug EÜV Untersuchungsart

Probengewinnung Probenahme nach Zweck "a" (mikrobiologisch)

Entnahmestelle **Gemeinde Waging am See**

Messpunkt **Brunnen 2** 4110804200001 Objektkennzahl

Hinweis:

DIN EN ISO/IEC 17025:2018 akkreditiert.

Die in diesem Dokument berichteten Verfahren sind gemäß

Brunnen konnte zu Probenahme nicht eingeschalten werden!

Untersuchungen aus Anlage 1 und/oder Anlage 3 (Indikatorparameter) der TrinkwV sowie chemisch-technische und hygienische Parameter

DIN 50930 Einheit Ergebnis Best.-Gr. TrinkwV / EN 12502 Methode

Sensorische Prüfungen

Färbung (vor Ort)	farblos	DIN EN ISO 7887 : 2012-04, Verfahren A
Geruch (vor Ort)	ohne	DEV B 1/2 : 1971
Trübung (vor Ort)	klar	visuell
Geschmack organoleptisch (vor Ort)	ohne	DEV B 1/2 : 1971

Physikalisch-chemische Parameter

Wassertemperatur (vor Ort)	°C	16,1			DIN 38404-4 : 1976-12
Leitfähigkeit bei 25°C (vor Ort)	μS/cm	662	1	2790	DIN EN 27888 : 1993-11
pH-Wert (vor Ort)		7,11	0	6,5 - 9,5	DIN EN ISO 10523 : 2012-04
Leitfähigkeit bei 20°C (Labor)	μS/cm	599	1	2500	DIN EN 27888 : 1993-11
Leitfähigkeit bei 25°C (Labor)	μS/cm	668	1	2790	DIN EN 27888 : 1993-11
pH-Wert (Labor)		7,37	0	6,5 - 9,5	DIN EN ISO 10523 : 2012-04
Temperatur (Labor)	°C	12,3	0		DIN 38404-4 : 1976-12
Trübung (Labor)	NTU	0,02	0,02	1	DIN EN ISO 7027-1 : 2016-11
Temperatur bei Titration KB 8,2	°C	12,3	0		DIN 38404-4 : 1976-12
Temperatur bei Titration KS 4,3	°C	20,5	0		DIN 38404-4 : 1976-12

Kationer

Ammonium (NH4)	mg/l	0,01	0,01	0,5		DIN ISO 15923-1 : 2014-07
Calcium (Ca)	mg/l	98,7	0,5		>20 12)	DIN EN ISO 17294-2 : 2017-01
Kalium (K)	mg/l	1,6	0,5			DIN EN ISO 17294-2 : 2017-01
Magnesium (Mg)	mg/l	19,6	0,5			DIN EN ISO 17294-2 : 2017-01

Seite 1 von 3

Moostraße 6 a, 82279 Eching am Ammersee, Germany Tel.: +49 (08143) 7901, Fax: +49 (08143) 7214 eMail: eching@agrolab.de www.agrolab.de

Datum

30.06.2022

Kundennr.

4100014118

PRÜFBERICHT

gekennzeichnet

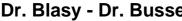
1762525 Auftrag

Analysennr.	282135	Trinkwasser				
	Einheit	Ergebnis	Best -Gr	TrinkwV	DIN 50930 / EN 12502	Methode
N	1			T	/ LIV 12502	
Natrium (Na)	mg/l	14,3	0,5	200		DIN EN ISO 17294-2 : 2017-
Anionen				1	1 1	
Chlorid (CI)	mg/l	21,6	11	250		DIN ISO 15923-1 : 2014-
Nitrat (NO3)	mg/l	6,3	11	50		DIN ISO 15923-1 : 2014-
Orthophosphat (o-PO4)	mg/l	<0,05	0,05		10)	DIN ISO 15923-1 : 2014-
Säurekapazität bis pH 4,3	mmol/l	6,43	0,05		>1 12)	DIN 38409-7 : 2005-1
Sulfat (SO4)	mg/l	8,9	1	250		DIN ISO 15923-1 : 2014-
Summarische Parameter						
DOC	mg/l	0,8	0,5			DIN EN 1484 : 2019-0
Gasförmige Komponenten						
Basekapazität bis pH 8,2	mmol/l	0,62	0,01		<0,2 12)	DIN 38409-7 : 2005-1
Sauerstoff (O2) gelöst	mg/l	7,2	0,1		>3 13)	DIN EN 25813 : 1993-
Berechnete Werte			,	•		
Calcitlösekapazität	mg/l	-33		5 8		DIN 38404-10 : 2012-
Carbonathärte	°dH	18,0	0,14	J 9)	DIN 38409-6 : 1986-0
delta-pH	uii	0,22	0,17			Berechnung
Delta-pH-Wert: pH(Labor) - pHC		0,22				Berechnung
Freie Kohlensäure (CO2)	mg/l	27				Berechnung
Gesamthärte	°dH	18,3	0,3			DIN 38409-6 : 1986-0
Gesamthärte (Summe Erdalkalien)			0,05			DIN 38409-6 : 1986-0
Härtebereich	mmol/l	3,27	0,05			WRMG: 2013-07
Ionenbilanz	%	hart -2				Berechnung
Kohlenstoffdioxid, überschüssig (aggressiv)						Berechnung
(KKG)	mg/l	0,0				Berechnung
Kohlenstoffdioxid, zugehörig (KKG)	mg/l	27				Berechnung
Kupferquotient S		69,60			>1,5 13)	Berechnung nach DIN EN 12502 : 2005-03
Lochkorrosionsquotient S1)	0,14			<0,5 13)	Berechnung nach DIN EN 12502 : 2005-03
pH bei Bewertungstemperatur (pHtb)		7,37		6,5 - 9,5		DIN 38404-10 : 2012-
pH bei Calcitsätt. d. Calcit (pHc tb)		7,14				DIN 38404-10 : 2012-
Sättigungsindex Calcit (SI)		0,32				DIN 38404-10 : 2012-
Zinkgerieselquotient S2)	7,77			>3/< 1 ¹⁴⁾	Berechnung nach DIN EN 12502 : 2005-03
Mikrobiologische Untersuchui	ngen					
Coliforme Bakterien	KBE/100ml	0	0	0		DIN EN ISO 9308-1 : 2017-
E. coli	KBE/100ml	0	0	0		DIN EN ISO 9308-1 : 2017-
Koloniezahl bei 22°C	KBE/ml	0	0	100		TrinkwV §15 Absatz (1c) : 200 (Stand 2021-09)
Koloniezahl bei 36°C	KBE/ml	0	0	100		TrinkwV §15 Absatz (1c): 200 (Stand 2021-09)

5	Coliforme Bakterien	KBE/100ml	0	0	0	DIN EN ISO 9308-1 : 2017-09
5	E. coli	KBE/100ml	0	0	0	DIN EN ISO 9308-1 : 2017-09
5	Koloniezahl bei 22°C	KBE/ml	0	0	100	TrinkwV §15 Absatz (1c): 2001-05 (Stand 2021-09)
-	Koloniezahl bei 36°C	KBE/ml	0	0	100	TrinkwV §15 Absatz (1c) : 2001-05

Bei der Mischung von Wasser aus zwei oder mehr Wasserwerken darf die Calcitlösekapazität im Verteilungsnetz den Wert von 10 mg/l 8) nicht überschreiten.

Seite 2 von 3 Deutsche Akkreditierungsstelle D-PL-14289-01-00


Die in diesem Dokument

⁹⁾ Die Anforderung hinsichtlich der Calcitlösekapazität gilt als erfüllt, wenn der pH-Wert am Werkausgang größer oder gleich 7,7 ist.

Geforderter Bereich der DIN 50930 "Korrosion metallischer Werkstoffe im Innern von Rohrleitungen, Behältern und Apparaten bei 12) Korrosionsbelastung durch Wässer", Teil 6 "Beeinflussung der Trinkwasserbeschaffenheit" Geforderter Bereich der DIN EN 12502 "Korrosionsschutz metallischer Werkstoffe - Hinweise zur Abschätzung der

Korrosionswahrscheinlichkeit in Wasserverteilungs- und -speichersystemen"

Nach DIN EN 12502 nur relevant, wenn Nitratgehalt > 0,3 mmol/l (entspr.ca.20 mg/l)

Dr. Blasy - Dr. BusseNiederlassung der AGROLAB Labor GmbH, Bruckberg Moosstraße 6 a, 82279 Eching am Ammersee, Germany Tel.: +49 (08143) 7901, Fax: +49 (08143) 7214 eMail: eching@agrolab.de www.agrolab.de

Datum

30.06.2022

Kundennr.

4100014118

PRÜFBERICHT

Auftrag

gekennzeichnet

Verfahren sind

Ausschließlich nicht akkreditierte '

DIN EN ISO/IEC 17025:2018 akkreditiert.

Die in diesem Dokument berichteten Verfahren sind gemäß

1762525

Symbol Analysennr. 282135 Trinkwasser

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Probenahme erfolgte gemäß: DIN ISO 5667-5: 2011-02; DIN EN ISO 19458: 2006-12 Die vollständigen Probenahmeprotokolle sind auf Anfrage verfügbar.

Nachfolgende Parameter sind grenzwertüberschreitend bzw. liegen ausserhalb des geforderten Bereichs

Analysenparameter

Wert Einheit

Basekapazität bis pH 8,2

0,62 mmol/l

Richtwert DIN 50930 / EN 12502 nicht eingehalten

Anmerkung zu den Ergebnissen der mikrobiologischen Parameter:

Mikrobiologische Untersuchungen, deren Bebrütungszeiten an einem Sonn- oder Feiertag enden, werden nach Ablauf der regulären Bebrütungszeit bis zur endgültigen Auswertung bei 4°C gekühlt gelagert (gemäß DIN EN ISO 8199 : 2008-01). Zur Identifikation und Bestätigung von Mikroorganismen mittels MALDI-TÖF wird die kommerzielle Datenbank MALDI-Biotyper Compass Library V 7.0 von Bruker Daltonik eingesetzt.

Beginn der Prüfungen: 28.06.2022 Ende der Prüfungen: 30.06.2022

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

Dr.Blasy-Dr.Busse Frau Lutz, Tel. 08143/79-102

FAX: 08143/7214, E-Mail: serviceteam2.eching@agrolab.de

Kundenbetreuung

Dr. Blasy - Dr. Busse

Niederlassung der AGROLAB Labor GmbH, Bruckberg Moostraße 6 a, 82279 Eching am Ammersee, Germany Tel.: +49 (08143) 7901, Fax: +49 (08143) 7214 eMail: eching@agrolab.de www.agrolab.de

Your labs. Your service.

Dr.Blasy-Dr.Busse Moosstr. 6A, 82279 Eching

Gemeindewerke Waging am See WASSERVERSORGUNG Am Höllenbach 18 83329 Waging a. See

> Datum 30.06.2022 Kundennr. 4100014118

PRÜFBERICHT

Auftrag 1762525

Analysennr. 282136 Trinkwasser

Projekt 13330 Trinkwasseruntersuchungen

Probeneingang 28.06.2022

Probenahme 27.06.2022 09:30

Probenehmer AGROLAB Jürgen Christiansen (613)

Kunden-Probenbezeichnung 966851

LFW, Vollzug EÜV Untersuchungsart

Probengewinnung Probenahme nach Zweck "a" (mikrobiologisch)

Entnahmestelle **Gemeinde Waging am See**

Messpunkt **Brunnen 3** 4110804200081 Objektkennzahl

Hinweis:

DIN EN ISO/IEC 17025:201

Die in diesem Dokument berichteten Verfahren sind gemäß

Verfahren sind mit dem Symbol " *) " gekennzeichnet

Brunnen konnte zu Probenahme nicht eingeschalten werden!

Untersuchungen aus Anlage 1 und/oder Anlage 3 (Indikatorparameter) der TrinkwV sowie chemisch-technische und hygienische Parameter

DIN 50930 Einheit Ergebnis Best.-Gr. TrinkwV / EN 12502 Methode

Sensorische Prüfungen

Färbung (vor Ort)	farblos	DIN EN ISO 7887 : 2012-04, Verfahren A
Geruch (vor Ort)	ohne	DEV B 1/2 : 1971
Trübung (vor Ort)	klar	visuell
Geschmack organoleptisch (vor Ort)	ohne	DEV B 1/2 : 1971

Physikalisch-chemische Parameter

_₹ Wasserter	peratur (vor Ort)	°C	13,6			DIN 38404-4 : 1976-12
Leitfähigkeit	bei 25°C (vor Ort)	μS/cm	706	1	2790	DIN EN 27888 : 1993-11
pH-Wert (v	or Ort)		7,09	0	6,5 - 9,5	DIN EN ISO 10523 : 2012-04
Leitfähigkeit	bei 20°C (Labor)	μS/cm	637	1	2500	DIN EN 27888 : 1993-11
Leitfähigkeit	bei 25°C (Labor)	μS/cm	711	1	2790	DIN EN 27888 : 1993-11
pH-Wert (L	abor)		7,14	0	6,5 - 9,5	DIN EN ISO 10523 : 2012-04
Temperatu	r (Labor)	°C	12,9	0		DIN 38404-4 : 1976-12
Trübung (L	abor)	NTU	0,02	0,02	1	DIN EN ISO 7027-1 : 2016-11
Temperatur	bei Titration KB 8,2	°C	12,9	0		DIN 38404-4 : 1976-12
Temperatur	bei Titration KS 4,3	°C	19,9	0		DIN 38404-4 : 1976-12

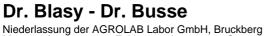
Ammonium (NH4)	mg/l	0,01	0,01	0,5		DIN ISO 15923-1 : 2014-07
Calcium (Ca)	mg/l	115	0,5		>20 12)	DIN EN ISO 17294-2 : 2017-01
Kalium (K)	mg/l	1,8	0,5			DIN EN ISO 17294-2 : 2017-01
Magnesium (Mg)	mg/l	21,2	0,5			DIN EN ISO 17294-2 : 2017-01

Seite 1 von 3

Moostraße 6 a, 82279 Eching am Ammersee, Germany Tel.: +49 (08143) 7901, Fax: +49 (08143) 7214 eMail: eching@agrolab.de www.agrolab.de

Datum 30.06.2022 Kundennr. 4100014118

PRÜFBERICHT


gekennzeichnet

at (o-PO4) at bis pH 4,3 he Parameter Komponenten t bis pH 8,2 2) gelöst Werte azität e pH(Labor) - pHC	Einheit mg/I mg/I mg/I mg/I mg/I mmol/I mg/I mg/I mmol/I mg/I and in the interval of the interval o	86 Trinkwasser Ergebnis 8,1 12,0 11,4 0,05 7,16 12,1 0,7 0,75 7,2 -45 20,0	BestGr. 0,5 1 1 0,05 0,05 1 0,5 0,01 0,1	TrinkwV 200 250 50 250	DIN 50930 / EN 12502 	Methode DIN ISO 17294-2: 2017-01 DIN ISO 15923-1: 2014-07 DIN ISO 15923-1: 2014-07 DIN ISO 15923-1: 2014-07 DIN 38409-7: 2005-12 DIN ISO 15923-1: 2014-07 DIN EN 1484: 2019-04 DIN 38409-7: 2005-12 DIN EN 25813: 1993-01
he Parameter Komponenten t bis pH 8,2 2) gelöst Werte azität	mg/l mg/l mg/l mmol/l mg/l mmol/l mg/l	12,0 11,4 0,05 7,16 12,1 0,7 0,75 7,2	1 1 0,05 0,05 1 0,5	250 50	<0,2 12)	DIN ISO 15923-1 : 2014-07 DIN ISO 15923-1 : 2014-07 DIN ISO 15923-1 : 2014-07 DIN 38409-7 : 2005-12 DIN ISO 15923-1 : 2014-07 DIN EN 1484 : 2019-04 DIN 38409-7 : 2005-12
he Parameter Komponenten t bis pH 8,2 2) gelöst Werte azität	mg/l mg/l mg/l mmol/l mg/l mmol/l mg/l	11,4 0,05 7,16 12,1 0,7 0,75 7,2	1 0,05 0,05 1 0,5	50	<0,2 12)	DIN ISO 15923-1 : 2014-07 DIN ISO 15923-1 : 2014-07 DIN 38409-7 : 2005-12 DIN ISO 15923-1 : 2014-07 DIN EN 1484 : 2019-04 DIN 38409-7 : 2005-12
he Parameter Komponenten t bis pH 8,2 2) gelöst Werte azität	mg/l mg/l mmol/l mg/l mg/l mmol/l mg/l mmol/l mg/l	11,4 0,05 7,16 12,1 0,7 0,75 7,2	1 0,05 0,05 1 0,5	50	<0,2 12)	DIN ISO 15923-1 : 2014-07 DIN ISO 15923-1 : 2014-07 DIN 38409-7 : 2005-12 DIN ISO 15923-1 : 2014-07 DIN EN 1484 : 2019-04 DIN 38409-7 : 2005-12
he Parameter Komponenten t bis pH 8,2 2) gelöst Werte azität	mg/l mg/l mmol/l mg/l mg/l mmol/l mg/l mmol/l mg/l	11,4 0,05 7,16 12,1 0,7 0,75 7,2	1 0,05 0,05 1 0,5	50	<0,2 12)	DIN ISO 15923-1 : 2014-07 DIN ISO 15923-1 : 2014-07 DIN 38409-7 : 2005-12 DIN ISO 15923-1 : 2014-07 DIN EN 1484 : 2019-04 DIN 38409-7 : 2005-12
he Parameter Komponenten t bis pH 8,2 2) gelöst Werte azität	mg/l mmol/l mg/l mg/l mg/l mmol/l mg/l	0,05 7,16 12,1 0,7 0,75 7,2	0,05 0,05 1 0,5		<0,2 12)	DIN ISO 15923-1 : 2014-07 DIN 38409-7 : 2005-12 DIN ISO 15923-1 : 2014-07 DIN EN 1484 : 2019-04 DIN 38409-7 : 2005-12
he Parameter Komponenten t bis pH 8,2 2) gelöst Werte azität	mmol/l mg/l mg/l mmol/l mg/l mg/l	7,16 12,1 0,7 0,75 7,2	0,05 1 0,5	250	<0,2 12)	DIN 38409-7 : 2005-12 DIN ISO 15923-1 : 2014-07 DIN EN 1484 : 2019-04 DIN 38409-7 : 2005-12
he Parameter Komponenten t bis pH 8,2 2) gelöst Werte azität	mg/l mg/l mmol/l mg/l	0,75 7,2	0,5	250	<0,2 12)	DIN ISO 15923-1 : 2014-07 DIN EN 1484 : 2019-04 DIN 38409-7 : 2005-12
Komponenten t bis pH 8,2 2) gelöst Werte azität	mmol/l mg/l	0,75 7,2	0,01			DIN 38409-7 : 2005-12
Komponenten t bis pH 8,2 2) gelöst Werte azität	mmol/l mg/l	0,75 7,2	0,01			DIN 38409-7 : 2005-12
t bis pH 8,2 2) gelöst Werte azität	mmol/l mg/l	0,75 7,2	0,01			DIN 38409-7 : 2005-12
t bis pH 8,2 2) gelöst Werte azität	mg/l	7,2				
2) gelöst Werte azität e	mg/l	7,2				
Werte azität e	mg/l	-45	0,1		/3	DIN LN 23013 . 1993-01
azität e	-	-				
9	-	-		_ 。	N I	
	°dH	20.0		5 8 9	Ś	DIN 38404-10 : 2012-12
pH(Labor) - pHC			0,14			DIN 38409-6 : 1986-01
pH(Labor) - pHC		0,26				Berechnung
" (000)		0,03				Berechnung
äure (CO2)	mg/l	32				Berechnung
Name of Frankling Park	°dH	20,9	0,3			DIN 38409-6 : 1986-01
Summe Erdalkalien)	mmol/l	3,74	0,05			DIN 38409-6 : 1986-01
						WRMG : 2013-07
üherschüssin (angressiv)						Berechnung Berechnung
	ITIG/I	0,0				Berechnung
	mg/l	32				Berechnung
nt S	"	56,64			>1,5 ¹³⁾	Berechnung nach DIN EN 12502 : 2005-03
isquotierit o i	')	0,11			<0,5 13)	Berechnung nach DIN EN 12502 : 2005-03
				6,5 - 9,5		DIN 38404-10 : 2012-12
						DIN 38404-10 : 2012-12
						DIN 38404-10 : 2012-12
uotient S2	7	3,23			>3/< 114)	Berechnung nach DIN EN 12502 : 2005-03
ische Untersuchu	ngen	1				
		0	0	0		DIN EN ISO 9308-1 : 2017-09
WOTIOTI						DIN EN ISO 9308-1 : 2017-09
ei 22°C	KBE/ml	0	0	100		TrinkwV §15 Absatz (1c) : 2001-05 (Stand 2021-09)
ei 36°C	KBE/ml	0	0	100		TrinkwV §15 Absatz (1c): 2001-05 (Stand 2021-09)
	überschüssig (aggressiv) id, zugehörig (KKG) it S isquotient S1 ingstemperatur (pHtb) d. Calcit (pHc tb) ex Calcit (SI) uotient S2 gische Untersuchus eterien die 22°C ei 36°C ischung von Wasser aus schreiten. derung hinsichtlich der Calcit (BI) sebelastung durch Wässer er Bereich der DIN 50930 sebelastung durch Wässer er Bereich der DIN EN 12 swahrscheinlichkeit in Wässer	id, zugehörig (KKG) mg/l it S ") insquotient S1 ") ingstemperatur (pHtb) d. Calcit (pHc tb) ex Calcit (SI) uotient S2 ") ijische Untersuchungen terien KBE/100ml tei 22°C KBE/ml ei 36°C KBE/ml ischung von Wasser aus zwei oder mehr Wischreiten. derung hinsichtlich der Calcitlösekapazität ger Bereich der DIN 50930 "Korrosion metal isbelastung durch Wässer", Teil 6 "Beeinfluster Bereich der DIN EN 12502 "Korrosionss swahrscheinlichkeit in Wasserverteilungs-	wiberschüssig (aggressiv) mg/l 0,0 id, zugehörig (KKG) mg/l 32 it S 56,64 isquotient S1 0,11 ingstemperatur (pHtb) 7,36 id. Calcit (pHc tb) 7,10 ex Calcit (SI) 0,37 iuotient S2 3,23 ipische Untersuchungen sterien KBE/100ml 0 iei 22°C KBE/ml 0 iei 36°C KBE/ml 0 iei 36°C KBE/ml 0 iei 36°C KBE/ml 0 iei 36°C KBE/ml 0 ieschung von Wasser aus zwei oder mehr Wasserwerken darf die sechreiten. ieherung hinsichtlich der Calcitlösekapazität gilt als erfüllt, wenn der Sebelastung durch Wässer", Teil 6 "Beeinflussung der Trinkwasser er Bereich der DIN EN 12502 "Korrosionsschutz metallischer Wesswahrscheinlichkeit in Wasserverteilungs- und -speichersystemes	wiberschüssig (aggressiv) mg/l 0,0 id, zugehörig (KKG) mg/l 32 it S 56,64 isquotient S1 0,11 ingstemperatur (pHtb) 7,36 id. Calcit (pHc tb) 7,10 ex Calcit (SI) 0,37 uotient S2 3,23 ijische Untersuchungen tterien KBE/100ml 0 0 iei 22°C KBE/ml 0 0 ischung von Wasser aus zwei oder mehr Wasserwerken darf die Calcitlöse schreiten. derung hinsichtlich der Calcitlösekapazität gilt als erfüllt, wenn der pH-Wert er Bereich der DIN 50930 "Korrosion metallischer Werkstoffe im Innern von sbelastung durch Wässer", Teil 6 "Beeinflussung der Trinkwasserbeschaffe	"überschüssig (aggressiv) mg/l 0,0 id, zugehörig (KKG) mg/l 32 it S ') 56,64 insquotient S1 ') 0,11 ingstemperatur (pHtb) 7,36 6,5 - 9,5 id. Calcit (pHc tb) 7,10 ex Calcit (SI) 0,37 uotient S2 ') 3,23 ijische Untersuchungen terien KBE/100ml 0 0 0 it KBE/100ml 0 0 0 iei 22°C KBE/ml 0 0 100 ischung von Wasser aus zwei oder mehr Wasserwerken darf die Calcitlösekapazität im schreiten. Jerung hinsichtlich der Calcitlösekapazität gilt als erfüllt, wenn der pH-Wert am Werkau er Bereich der DIN 50930 "Korrosion metallischer Werkstoffe im Innem von Rohrleitung er Bereich der DIN 50930 "Korrosion metallischer Werkstoffe im Innem von Rohrleitung er Bereich der DIN EN 12502 "Korrosionsschutz metallischer Werkstoffe - Hinweise zusswahrscheinlichkeit in Wasserverteilungs- und -speichersystemen"	We

ō	Coliforme Bakterien	KBE/100ml	0	0	0	DIN EN ISO 9308-1 : 2017-09
5	E. coli	KBE/100ml	0	0	0	DIN EN ISO 9308-1 : 2017-09
ılalı	Koloniezahl bei 22°C	KBE/ml	0	0	100	TrinkwV §15 Absatz (1c) : 2001-05 (Stand 2021-09)
	Koloniezahl bei 36°C	KBE/ml	0	0	100	TrinkwV §15 Absatz (1c) : 2001-05 (Stand 2021-09)

- Bei der Mischung von Wasser aus zwei oder mehr Wasserwerken darf die Calcitlösekapazität im Verteilungsnetz den Wert von 10 mg/l nicht überschreiten.
- Die Anforderung hinsichtlich der Calcitlösekapazität gilt als erfüllt, wenn der pH-Wert am Werkausgang größer oder gleich 7,7 ist.
- Geforderter Bereich der DIN 50930 "Korrosion metallischer Werkstoffe im Innern von Rohrleitungen, Behältern und Apparaten bei Korrosionsbelastung durch Wässer", Teil 6 "Beeinflussung der Trinkwasserbeschaffenheit" Geforderter Bereich der DIN EN 12502 "Korrosionsschutz metallischer Werkstoffe - Hinweise zur Abschätzung der
- Korrosionswahrscheinlichkeit in Wasserverteilungs- und -speichersystemen"
- Nach DIN EN 12502 nur relevant, wenn Nitratgehalt > 0,3 mmol/l (entspr.ca.20 mg/l)

Niederlassung der AGROLAB Labor GmbH, Bruckberg Moosstraße 6 a, 82279 Eching am Ammersee, Germany Tel.: +49 (08143) 7901, Fax: +49 (08143) 7214 eMail: eching@agrolab.de www.agrolab.de

Datum 30.06.2022 Kundennr. 4100014118

PRÜFBERICHT

gekennzeichnet

Ausschließlich nicht akkreditierte Verfahren sind mit

EN ISO/IEC 17025:2018 akkreditiert.

Die in diesem Dokument berichteten Verfahren sind gemäß

`Auftrag **1762525**

Analysennr. **282136** Trinkwasser

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Probenahme erfolgte gemäß: DIN ISO 5667-5 : 2011-02; DIN EN ISO 19458 : 2006-12 Die vollständigen Probenahmeprotokolle sind auf Anfrage verfügbar.

Nachfolgende Parameter sind grenzwertüberschreitend bzw. liegen ausserhalb des geforderten Bereichs

Analysenparameter Wert Einheit

Basekapazität bis pH 8,2 0,75 mmol/l Richtwert DIN 50930 / EN 12502 nicht eingehalten

Anmerkung zu den Ergebnissen der mikrobiologischen Parameter:

Mikrobiologische Untersuchungen, deren Bebrütungszeiten an einem Sonn- oder Feiertag enden, werden nach Ablauf der regulären Bebrütungszeit bis zur endgültigen Auswertung bei 4°C gekühlt gelagert (gemäß DIN EN ISO 8199: 2008-01). Zur Identifikation und Bestätigung von Mikroorganismen mittels MALDI-TOF wird die kommerzielle Datenbank MALDI-Biotyper Compass Library V 7.0 von Bruker Daltonik eingesetzt.

Beginn der Prüfungen: 28.06.2022 Ende der Prüfungen: 30.06.2022

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

Dr.Blasy-Dr.Busse Frau Lutz, Tel. 08143/79-102 FAX: 08143/7214, E-Mail: serviceteam2.eching@agrolab.de Kundenbetreuung

